Warm-up: Simplify.

$$1. \ x^4 \cdot x^7$$

2.
$$\frac{x^9}{x^6}$$

3.
$$(x^5)^8$$

4.
$$2^{x+1} = 8$$

5.
$$3^{2x-3} = \frac{1}{3}$$

6.
$$8^{5-2x} = 1$$

Notes about Logarithms

1. What if you cannot make the bases the same? Consider: $7^{2x} = 12$.

How do you solve an equation where the unknown variable is in the exponent?

2. A logarithm is an ______.

Evaluating Logarithms

a)
$$\log_2 8$$

b)
$$\log_5 \frac{1}{25}$$
 c) $5\log_6 1$ d) $\log_7 0$

c)
$$5\log_6 1$$

d)
$$\log_7 0$$

g)
$$5\log\sqrt{10}$$

h)
$$\log 10^{\sqrt{5}}$$

i)
$$\ln e^4$$

k)
$$\ln \frac{1}{e^3}$$

1)
$$e^{\ln 5}$$

Properties of Logarithms

1.
$$\log_b b =$$
 2. $\log_b 1 =$ 3. $\log_b b^a =$ 4. $b^{\log_b n} =$

2.
$$\log_b 1 =$$

3.
$$\log_b b^a =$$

4.
$$b^{\log_b n} =$$

Change of Base Formulas

Example 1: Evaluate $\log_4 25$

Base	Base 10	Base e
Formula		

Properties of Logarithms Section 0.5 Calculus

Example 2: Evaluate $\log_3 16$ using

a) the change of base formula with common logs (round to 4 decimal places).

b) the change of base formula with natural logs (round to 4 decimal places).

Properties of Logarithms

	Logarithm with Base a	Natural Logarithm
Product Property	$\log_a(uv) =$	ln(uv) =
Quotient Property	$\log_a\left(\frac{u}{v}\right) =$	$\ln\left(\frac{u}{v}\right) =$
Power Property	$\log_a u^n =$	$\ln u^n =$

Example 3: Write each logarithm in terms on ln 2 and ln 3.

b)
$$\ln \frac{2}{27}$$

Practice Problem 2: Write each logarithm in terms of $\ln 2$ and $\ln 5$.

b)
$$\ln \frac{5}{32}$$

Example 4: Use the properties of logs to expand each expression.

a)
$$\log_4 5x^3y$$

$$b) \ln \frac{\sqrt{3x-5}}{7}$$

Practice Problem 3: Use the properties of logs to expand each expression.

a)
$$\log 3x^2y$$

b)
$$\ln \frac{\sqrt{4x+1}}{8}$$

Properties of Logarithms Section 0.5 Calculus

Example 5: Use the properties of logs to condense each expression to a single log (or ln).

a)
$$\frac{1}{2}\log_{10} x + 3\log_{10} (x+1)$$

b)
$$2\ln(x+2) - \ln x$$

c)
$$\frac{1}{3} [\log_2 x + \log_2 (x - 4)]$$

Example 6

If $a = \log_2 6$ and $b = \log_2 10$, express the following in terms of a and b.

a)
$$\log_2 24$$

b)
$$\log_2 600$$

c)
$$\log_2 \sqrt[4]{10}$$

Solving Logarithmic Equations

1. Logarithmic and Exponentials Functions are ______.

2. Solve log equations (undo the log) by _____

3. Solve exponential equations (undo the exponent) by ______

Examples of Solving Log and Exponential Equations

$$1. \ \log x = \sqrt{2}$$

2.
$$ln(x+1) = 5$$
 3. $5^x = 7$

3.
$$5^x = 7$$

4.
$$7^{2x} = 12$$

Properties of Logarithms Section 0.5 Calculus

Class Work

Evaluate the logarithm using the change of base formula. Round to three decimals.

1. $\log_7 4$

2. $\log_{20} 175$

Evaluate the logarithm using the properties of logs, given

 $\log_b 2 \approx 0.3562$ $\log_b 3 \approx 0.5646$ $\log_b 5 \approx 0.8271$

3. $\log_{h} 30$

4. $\log_b \frac{16}{25}$

Use the properties of logs to expand the expression.

5. $\ln \frac{xy}{z}$

6. $\ln \sqrt{\frac{x^2}{v^3}}$

Use the properties of logs to condense the expression to a single log or ln.

7. $2 \ln x + \ln(x+1)$

8. $3 \ln x + 2 \ln y - 4 \ln z$

Use the properties of logs to rewrite the expression in terms of r, s, and t given

 $r = \ln a$ $s = \ln b$ $t = \ln c$

$$c - \ln h$$

$$t - \ln c$$

9. $\ln a^2 \sqrt{bc}$

10.
$$\ln \frac{b}{a^3c}$$

Solve for x.

11.
$$3e^{-2x} = 5$$

12.
$$\log_3(3^x) = 7$$